Skineffect |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lit.: Meinke.Gundlach, Taschenbuch der Hochfrequenztechnik, 4.Aufl.,
Springer-Verlag, 1986 |
|
edited by Klaus Lange and Karl-Heinz
Loecherer, pages B13..B17 |
|
ISBN 3-540-15393-4 Springer Berlin...
Und ISBN 0-387-15393-4 Springer New York.... |
|
|
|
Physical constants: |
mo |
1,26E-06 |
[H/m] = |
1,256637 |
[uH/m] |
|
k1 = sqrt (ksilber/kmetall) - k
und r - |
|
|
eo |
8,855 |
[pF/m] |
|
Table for some metals |
|
|
Secondary
Skin-Effect: |
|
|
|
|
Secondary-Coil Data: |
|
Metal |
k1 |
k |
[m/mm2W] |
r |
[Wmm2/m] |
|
|
|
|
von |
bis |
von |
bis |
|
|
length of secondary conductor |
L = Lsec |
722,5663 |
[m] |
|
Silver |
1 |
62,5 |
|
0,016 |
|
|
|
relative magnetic permeability |
mr |
1 |
[ - ] |
|
Copper |
1,03 |
56 |
|
0,01786 |
|
|
|
spec.resist.of copper (20C) r = |
r |
0,01786 |
[Ohm mm2 / m] |
Bronce |
1,07 |
55 |
18 |
0,018 |
0,056 |
|
|
conductivity of conductor |
k |
55,99104 |
[m / (mm2 Ohm)] |
Gold |
1,2 |
44 |
|
0,023 |
|
|
|
diameter of secondary conductor (=solid wire) |
D = Dsec |
0,8 |
[mm] |
|
Aluminium |
1,35 |
35 |
|
0,02857 |
|
|
|
resonant frequency |
f |
103,79 |
[kHz] |
|
Magnesium |
1,69 |
22 |
|
0,045 |
|
|
|
at resonant frequency |
w |
652127,7 |
[s-1] |
|
Tungsten |
1,86 |
18 |
|
0,055 |
|
|
|
Zinc |
1,95 |
16 |
|
0,063 |
|
|
|
Brass |
2,2 |
14 |
11 |
0,07 |
0,09 |
|
|
Nickel |
2,19 |
13 |
9 |
0,08 |
0,11 |
|
|
|
|
|
|
Iron |
2,50 |
10 |
7 |
0,1 |
0,15 |
|
|
Decisive for the losses
by skineffect is the so called skin-depth d, |
|
Tin |
2,7 |
9,1 |
|
0,11 |
|
|
|
The fields will then have
declined to 1/e = 37% of the field-strength |
|
Platin |
2,6 |
9 |
7 |
0,11 |
0,14 |
|
|
at the surface. In
practice: |
|
|
|
|
|
Tantal |
2,9 |
7,43 |
|
0,13456 |
|
|
|
- for flat
conductors of thickness D > 10d, or |
|
|
|
Plumb |
3,61 |
4,8 |
|
0,21 |
|
|
|
- for circular
conductors of diameter D > 10d , |
|
|
|
Nickelin |
5,21 |
2,3 |
|
0,43 |
|
|
|
an evenly distributed
current within a surface-layer of thickness d can |
|
Manganin |
5,21 |
2,3 |
|
0,43 |
|
|
|
be assumed, and the material below
considered without current flow. |
|
Konstantan |
5,6 |
2 |
|
0,5 |
|
|
|
Correct resistance values are
obtained by applying this assumption. |
|
Stainl.Steel |
6,7 |
1,39 |
|
0,71824 |
|
|
|
|
|
|
|
|
Mercury |
7,75 |
1,04 |
|
0,96 |
|
|
|
|
Skin-depth d = SQRT( 2 / (w mo mr k) )
= |
d |
0,208778 |
[mm] |
|
Coal, ca. |
50 |
0,0250 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Alternative skin-depth formula (s. table!) |
|
|
Data in part from Moeller Franz,
Grundlagen der Elektrotechnik Bd.I, |
|
|
d [mm]
= 64*k1 / SQRT( f [MHz] ) |
d |
0,204617 |
[mm] |
|
B.G.Teubner Verlagsgesellschaft mbH,
Stuttgart 1959, Seite 19 |
|
|
|
|
|
|
(Data at 20C) |
|
|
|
|
|
|
|
|
Remark: The result from the first formula is used in the calculations below. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Circular
solid wires: |
( Length L[m], Diameter
D[mm] ) |
|
|
|
|
|
|
|
|
|
DC resistance |
|
Ro = L / ( k D2 p/4
) |
25,67375 |
Ohm |
|
|
|
|
|
|
|
actual |
D/d |
3,831824 |
|
|
|
|
R/Ro |
|
|
|
|
|
|
|
If |
D/d |
< 2 |
then |
R = Ro |
|
|
not valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If 2 < |
D/d |
< 4 |
then |
R = Ro [ 1 + (D / 5.3d )4 ] |
32,68843 |
Ohm |
1,273224 |
|
|
|
|
|
|
|
|
|
If 4 < |
D/d |
< 10 |
then |
R = Ro [ 0.25 + (D / 4d ) ] |
not
valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If |
D/d |
> 10 |
then |
R = Ro (D / 4d ) |
|
not
valid |
Ohm |
n.a. |
|
|
|
Final result for secondary coil (---> TC calc.) = |
32,68843 |
|
|
Primary
Skin-Effect: |
|
|
|
|
Copper Tubing / Wire Primary-Coil Data: |
|
|
|
|
|
|
length of primary conductor + wiring, used in calculation |
L = Lprim |
5,43 |
[m] |
|
|
relative magnetic permeability |
mr |
1 |
[ - ] |
|
|
spec.resist.of copper (20C) r = |
r |
0,01786 |
[Ohm mm2 / m] |
|
|
conductivity of conductor |
k |
55,99104 |
[m / (mm2 Ohm)] |
|
|
diameter of primary conductor |
D = Dprim |
8 |
[mm] |
|
Leave
empty or set to zero if solid wire ------> |
tube wall thickness |
w |
1[1] |
[mm] |
|
|
resonant frequency |
f |
103,79 |
[kHz] |
|
|
at resonant frequency |
w |
652127,7 |
[s-1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Skin-depth d = SQRT( 2 / (w mo mr k) )
= |
d |
0,208778 |
[mm] |
|
|
|
w/d |
4,78978 |
|
|
Alternative skin-depth formula (s. table!) |
|
|
|
d [mm]
= 64*k1 / SQRT( f [MHz] ) |
d |
0,204617 |
[mm] |
|
|
w/d |
4,88719 |
|
|
|
|
|
|
|
|
|
|
Remark: The result from the first formula is used in the calculations below. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Circular
solid wires: |
( Length L[m], Diameter
D[mm] ) |
|
|
|
|
|
|
|
|
|
DC resistance |
|
Ro = L / ( k D2 p/4
) |
0,001929 |
Ohm |
|
|
|
|
|
|
|
actual |
D/d |
38,31824 |
|
|
|
|
R/Ro |
|
|
|
|
|
|
|
If |
D/d |
< 2 |
then |
R = Ro |
|
|
not valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If 2 < |
D/d |
< 4 |
then |
R = Ro [ 1 + (D / 5.3d )4 ] |
not
valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If 4 < |
D/d |
< 10 |
then |
R = Ro [ 0.25 + (D / 4d ) ] |
not
valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If |
D/d |
> 10 |
then |
R = Ro (D / 4d ) |
|
0,018482 |
Ohm |
9,58 |
|
|
|
|
|
|
|
Circular
tubes: |
|
( Wall thickness w = |
1 |
[mm] ) |
|
|
|
|
|
|
|
|
R/Ro |
|
|
DC resistance |
|
Ro = L / { k [D2-(D-2w)2] p/4 } |
0,00441 |
Ohm |
|
|
|
Ro ~= L / { k (D-w) p w } |
0,00441 |
Ohm |
1 |
|
actual |
w/d |
4,78978 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If |
w/d |
<= 1 |
then |
R = Ro |
(Error < 10%) |
not valid |
Ohm |
n.a. |
|
|
|
|
|
|
|
|
|
If |
w/d |
> 2.5 |
then |
R = L / ( k d D p ) |
|
0,018482 |
Ohm |
4,19 |
|
|
|
|
|
|
|
|
|
If |
w/d |
= 1.6 |
then |
R ~= 0.9 Ro |
|
not
valid |
Ohm |
n.a. |
|
|
|
|
( = ca. 90% of the solid wire
resistance with equal cross-section) |
|
|
|
|
(
meaning: in this case, tube is better than solid wire !! ) |
|
|
|
|
|
|
|
|
|
|
|
Final result for primary coil (---> TC calc.) = |
0,018482 |
|
|
|
|
|
|
|
Flat
conductors: |
( Thickness s, Width b,
Length L ) |
|
|
|
|
Thickness |
s |
0,6 |
[mm] |
|
|
|
|
Width |
b |
50 |
[mm] |
|
|
|
|
Length |
L |
5,43 |
[m] |
|
|
|
|
Material |
|
Copper |
|
|
|
|
|
Specific conductivity |
k |
56 |
[m / (mm2 Ohm)] |
|
|
|
|
|
|
|
|
DC resistance |
|
Ro = L / ( k s b ) |
|
0,003232 |
Ohm |
|
|
|
|
|
|
|
actual |
s/d |
2,873868 |
|
|
|
|
|
|
|
|
|
|
If |
s/d |
< 0.5 |
then |
R = Ro |
(Error < 10%) |
0,003232 |
Ohm |
|
|
|
|
|
|
|
If |
s/d |
> 5 |
then |
R ~ = L / (2 k
d b ) |
|
0,004644 |
Ohm |
|
|
|
|
|
If |
w/d |
= p |
then |
R ~ = 0.9 L / (2 k
d b ) |
0,00418 |
Ohm |
|
|
|
|
( = ca. 90% of
"fat-sheet"-resistance: Minimum!) |
|
|
|
|
|
End
of Primary Skin-Effect calculation |
|
|
|
|
|
|
|
The following graph for circular conductors was
taken from |
|
|
|
|
|
|
Lit: |
Telefunken -Laborbuch, 2.Ausgabe
1958 |
|
|
Herausgeber: Telefunken GmbH,
Ulm/Donau |
|
|
Druck: Brueder Hartmann, Berlin,
Germany |
|
|
|
|
|
Remark: Minor quality of the graph,
because the values in the table were |
|
|
|
transferred manually, and 'by eye',
from a tiny graph in the book. |
|
|
With f[kHz], w[mm],
D[mm], k [m/(mm2 Ohm)] |
|
|
we have the definition
of |
x = (1/1000)*sqrt[ k * 1000f * w * (D-w) ] |
|
|
or vice versa |
f = 1000 * x^2 / [ k * w * (D-w) ] |
|
|
|
|
|
|
solid wire |
|
|
f |
|
R/Ro |
R/Ro |
R/Ro |
R/Ro |
R/Ro |
R/Ro |
|
[kHz] |
x |
D/w=0.5 |
D/w=0.2 |
D/w=0.1 |
D/w=0.05 |
D/w=0.02 |
D/w=0.01 |
|
0,00 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
|
2,55 |
1 |
1,3 |
1,14 |
1,04 |
1,02 |
1 |
1 |
|
10,21 |
2 |
2,2 |
1,35 |
1,2 |
1,03 |
1,005 |
1,001 |
|
22,96 |
3 |
3,2 |
2,37 |
1,7 |
1,2 |
1,01 |
1,0015 |
|
28,63 |
3,35 |
3,5 |
2,6 |
1,85 |
1,3 |
1,02 |
1,002 |
|
40,82 |
4 |
4 |
3,2 |
2,28 |
1,6 |
1,1 |
1,003 |
|
50,52 |
4,45 |
|
3,5 |
2,5 |
1,75 |
1,15 |
1,005 |
|
63,79 |
5 |
|
2,8 |
2,06 |
1,25 |
1,07 |
|
91,85 |
6 |
|
3,5 |
2,5 |
1,5 |
1,18 |
|
125,02 |
7 |
|
2,85 |
1,76 |
1,25 |
|
163,29 |
8 |
|
3,38 |
2,1 |
1,45 |
|
206,67 |
9 |
|
3,8 |
2,38 |
1,62 |
|
255,14 |
10 |
|
2,65 |
1,77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|